
Paper TU-08

1 of 10

An Animated Guide©: Proc Report: The file behind the scenes
Russell Lavery, Contractor, Ardmore, PA

ABSTRACT
Proc report builds a Temporary Internal File (TIF) behind the
scenes and uses that file, and a Report Data Vector (RDV), to
compute new variables.

Understanding the creation of the Temporary Internal File, and the
flow of data through the Report Data Vector, makes programming
and debugging easier. The option Output=out, on the Proc Report
line, is the key to investigating and understanding Proc Report. It
writes the TIF to a regular SAS file.

This presentation does NOT cover formatting but will focus on:
1) The creation of the temporary internal table.
2) Relating the temporary internal table to syntax and output.
3) How proc report uses the report data vector.
4) Breaks and Rbreaks.
5) Differences among statements like: Compute before/after var Vs.
Compute Before/After Vs. Compute
6) Data variables vs. Report Variables and using the automatic retain
in Proc Report

INTRODUCTION
Understanding the full power of Proc Report is been made more
difficult because the “automatic and behind the scenes processes”
have received little attention.

This paper examines three major “behind the scenes” process for
Proc Report: 1) the creation of a Temporary Internal File (TIF), 2) the
use of the Report Data Vector (RDV) and 3) the use of the Data
Variable Table (DVT) . This paper will show the relationships
between these processes and make explicit the timing order of
calculations done by Proc Report.

Finally, it will relate the timing of calculations to problems/unexpected
results. It is hoped that understanding these processes will ease
debugging and make some of the advanced features of this useful
report writer more understandable.

 A REPRESENTATION OF PROC REPORT
DATA SET

SYNTAX

TEMP INTERNAL FILE

REPORT OUTPUT

REPORT DATA VECTOR Data Var Table

1

2

3

4 5

5

Figure 1

A graphical representation is useful for describing the underlying

process. Figure 1 shows a structure for thinking about the process
of SAS Proc Report.

To understand Proc Report, one must consider (numbers refer to
sections of Figure 1):
(1) the original SAS data set.
(2) the syntax that the programmer writes
(3) the Temporary Internal File (TIF) of summary information
(imagine it similar to a data set produced by a Proc Summary)
(4) the Report Data Vector (consider it similar in function to the
program data vector)
(5) the Data Variable Table (a special memory-resident file that holds
data variables -similar to the macro symbol table)
(6) the report output (on the SAS listing file).
All these can be conveniently (though with small fonts) represented
on the graphic above.

THE PROC REPORT PROCESS
REPORT DATA VECTOR Data Var Table

TEMP INTERNAL FILE

DATA SET

SYNTAX

REPORT OUTPUT
5) In

str
uctio

ns
3) All Data is processed before Proceeding

1) In
str

uctio
ns

7) Instructions

7a) Data From
Final Table is

copied into
report.

Report details
(underlining etc.)

are applied.

2) Raw Data Gets Summarized/Grouped

5a) Calculations

4) Data Copied into RDV 6) Data Copied back

Figure 2

The Proc Report process has several steps and Figure 2 provides
an overview of the steps. SAS goes to the program syntax (1) for
instructions on how to create the structure of the Temporary Internal
File (TIF) (what variables to include, what summaries to perform
etc.). In order to have a variable in the Temporary Internal File, it
must be mentioned in a “column statement” in the Proc Report
Syntax.

The TIF is not a copy of the raw data set. You need not bring all the
variables in the data set into the Temporary Internal File and Proc
Report can create variables that are not in the input data set. SAS
then processes all of the raw data set into the Temporary Internal
File (TIF) (2). If the syntax included instructions for creating
summary statistics, they would be created at this time. This
complete pre-processing of the source file (3), combined with storing
of summary statistics in the TIF is the reason why summary
statistics are “available” to the first line of Proc Report output. The
whole external file is processed in this step, and never accessed
again. After the TIF is created, all further processing uses the TIF.

One of the features of Proc Report is the ability to create new
variables that were not in the original data set. Proc Report creates
new variables with a process very similar to that used by the data

2

step- a data vector.

Assume that, after processing the data file, the TIF has many lines
of data. Lines of data are copied (4), one line at a time, into the
Report Data Vector (RDV). The RDV is like a one line Excel
spreadsheet and all calculations are performed there. Instructions in
your syntax (5), and the structure of the TIF, control what/when
calculations take place (5a).

Most SAS assignment functions are allowed in Proc Report-with one
limitation. If you imagine variables are in columns, calculations must
take place from left to right. When creating/modifying variable you
can only use as input variables that are in columns to the left of the
variable being created/modified. SAS moves from left to right across
the variables in the RDV and executes assignment statements that
are required to create or modify those variables. The programmer
must arrange variables in the column statement so that calculations
can be performed.

After calculations are completed, the values are then copied (6) from
the RDV back to the TIF. SAS then clears the RDV and copies
another line of data into the RDV. Variables in the RDV are set to
missing before a new line of data is copied into the RDV. This
automatic resetting to missing is a feature of Proc Report, and
occasionally a problem.

Often, a programmer will want to make a value available for use in
calculations that must be performed on every row of the TIF, in
effect retaining a variable value across rows. This “retaining” is
often used in calculating percentages, where the denominator for the
calculation must be the same for all rows of data. To “retain” a
variable’s value and use it on other lines in the TIF, the value must
be copied out of the RDV into the Data Variable Table (DVT) (A.K.A.
the Report Symbol Table). The DVT is a memory area that simply
holds variable names and their values. It is conceptually similar to
the macro symbol table. Values in the DVT are not automatically set
to missing as new observations are processed in the DVT. The
DVT is shown in Figures 1 and 2 but will not be shown in examples
where it does not play a part. This is to allow use of larger fonts and
more readable graphics.

7) and 7a) When all of the data has been processed through the
RDV, and copied back to the TIF, SAS uses the TIF and
instructions in the syntax to determine what to do as it copies
information from the TIF to the SAS listing. Often, instructions will
specify formats to be applied, column widths, column headings and
the like. It is not required that all the rows in the TIF be printed in the
listing.

The best method of explaining Proc Report process is to load the
graphic in Figure 1 with a small report and examine the details. It
should be remembered that the graphic in this paper, as opposed to
the animations in the presentation, is not an accurate representation
of the system. For example, Figure 3 shows activity in the data set,
the TIF, the RDV and report output in the SAS listing. All these do
not occur at the same time but are shown in one graphic to meet
space limitations on the paper.

The rules that one must consider when programming Proc Report
are listed below. This paper will proceed from simple to complex
reports to illustrate these rules. Rather than study the rules (as a set
of rules), it is suggested that the rules be compared to their usage
as shown in Figures 3, 4 and 5. Not all rules are illustrated in any
one example.

Important Proc Report Rules:
The column statement determines the number of columns in the
TIF. Syntax determines the number of rows in the TIF.

Define statements assign characteristics to variables (group, order,

format, width, title, group, order, across, sum, NOPRINT).

Rbreak Before/After, or Compute Before/After statements create
report level summary lines in the Temp Internal File. These lines will
be at the top or the bottom of the TIF

Compute Before/After Varname, create a summary line in the TIF
when levels of the variable change (order or grouping is advised).
These lines will be in the middle of the TIF, just before/after the
variable changes value.

Breaks, and Rbreaks, create summary lines in the Temp Internal
Table but no summary information is printed unless a break line
includes the summarize option.

Compute before/after, create summary lines in the Temp Internal
Table but nothing is printed unless the programmer also specifies a
same-level break with summarize option. Note: that Compute
before/after code does not, by itself, produce output.

Columns in the TIF contain the same type of information at different
levels of summarization.
IF YOU WANT CONTINUED ACCESS TO A PARTICULAR
LEVEL OF SUMMARIZATION, CODE IN A “COMPUTE BEFORE”
statement and copy the information you want to “retain or continue
to access” INTO ANOTHER (a Data) VARIABLE.

EXAMPLE 1:
(Illustrating: order, sum, rbreak before)
Please note the out= syntax (A) in Figure 3 that has made this
paper possible. If the reader wishes to experiment with Proc Report,
or to debug a problem report, this option is invaluable.

TEMP INTERNAL FILE
Zone Type price Bath _BREAK_

951650 20 _RBREAK_
1 Condo 214900 3
1 Split 100000 4
1 Split 82900 3
2 Condo 189900 4
2 Row 184000 3
3 Split 179950 3

REPORT DATA VECTOR
Zone Type price Bath _BREAK_

DATA SET
Type Zone Price Baths
Split 3 179950 3
Condo 1 214900 3
Split 1 100000 4
Split 1 82900 3
Condo 2 189900 4
Row 2 184000 3

SYNTAX
Proc report data=second

nowd headline out=out1;

column
zone type price bath;

define zone / order
width=5;

define type / order ;
define price/ sum ;

define bath /sum width=5;

Rbreak before
/summarize dul;

run;

951650 20 _RBREAK_

REPORT OUTPUT
Zone Type price Bath
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

951650 20
======== ====

1 Condo 214900 3
Split 100000 4

82900 3
2 Condo 189900 4

Row 184000 3
3 Split 179950 3

B

A
C

D

E

E

F

G

H

Figure 3 (shown enlarged at end)

In Figure 3, the complete data set (B) is shown in the upper left
corner of the graphic. Note that the order of the variables in the
source data set is not the same as it is in the column statement (C).
The column statement is used to bring variables from the source
data set into the TIF and to set the left-to-right order for variables the
TIF and SAS listing. In order to have a variable in the TIF, it must be
in the column statement. In summary, the TIF contains variables in
the column statement – in the order in which they appear in the
column statement (C).

If you are creating a new variable inside the Proc Report itself – and
want it in the TIF and SAS listing the name of the variable must be in
the column statement. This implies that you can have variables in
the column statement that are not in the source data set.

Very importantly, the TIF also contains one extra column,

3

automatically created by SAS, that contains information about the
“break level of the data”. A column in the TIF can contain data on
different levels of summarization and SAS uses the __BREAK__
column to “keep track” of the level of summarization. This is similar
to the way Proc Summary uses the __type__ variable. The first row
of the TIF, in Figure 3, contains price and number of bath
information, summarized for the whole data set. The other rows of
the TIF contain price bathroom information on individual houses.

The define statements (D) provide instructions on how the individual
variables are to be handled. Zone and type are defined as
“ORDER”. This will cause rows in the TIF, and SAS listing, will be
sorted/ordered by these variables. Choices for how variables are to
be handled are: order, group, computed, display, sum, min, max and
other algebraic functions. If variables are defined as group, the TIF
and the listing will only contain one line for every level of the grouping
variable(s). This is similar to grouping in SQL and class variables in
Proc Summary.

If the variable is not in the source data set, it must be handled as
“computed” and must have some compute syntax (not yet seen, or
defined) associated with it. Display tells Proc Report to simply list
the values. Arithmetic functions (sum, min, mean, etc.) tell SAS
how to how to handle that variable on summary lines (group and
break lines). In Figure 3 , price and path are defined as sum.
Whenever a line in the TIF is holding information from multiple lines
in the input data set, these variables will be summed.

Since there are no variables defined as group in Figure 3, the data in
the original data set will be copied to the TIF, line by line. This will
produce a simple listing of the data in the SAS data set.

Note that zone is specified to be 5 columns wide in the listing and
type will use the default width. There is a Rbreak Before line that
produces a summary information on all the observations in the data
set. Price and bath, on this line in the TIF, are the sum of all the
prices and baths in the data set. (951,650 dollars and 20
bathrooms).

The __break__ column (E) in the TIF, and the value of
__RBREAK__ (E) were created by the Rbreak Before statement (E).
There are 4 types of break statements and they are the keys to
creating summary statistics. Think of the command “Rbreak Before”
as being a shorthand for “Report Level Break Before the detail data”.
You can break after the whole report (Rbreak After) or before the
whole report (Rbreak Before) as in (E). These two commands give
access to summary information on the whole data set. You can also
issue a command Break Before/After variable_name. This would
create summarizations in the TIF before/after the variable changes
its value.

Break commands create lines in the TIF but do not produce any
output in the SAS listing unless the option /summarize is specified
as an option on the break command. This two command process is
useful because programmers sometimes want to create summary
lines in the TIF (so that summary information can be “accessed and
retained”) but do not want the rows containing summary information
printed in the listing.

When the syntax executes, lines of data are copied from the TIF to
the RDV and any calculations, specified in the syntax, happen in the
RDV. Any calculations are performed in the order in which the
variables appear in the column statement (reading left to right).
Variables must have been “read by SAS” before they can be used as
input in a calculation. Accordingly the following syntax would be
processed successfully. When SAS attempts to calculate doll_bath
it “knows” the values for price and bath.

Column zone type price bath Bath_doll;

Define bath_doll/computed;
Compute bath_doll;
 bath_doll =bath/price;
Endcomp;

This syntax below would not be processed successfully.
When SAS attempts to calculate doll_bath it “does not know” the
values for price or bath;

Column zone type bath_doll price bath;
Define bath_doll /computed;
Compute bath_doll;
 bath_doll =bath/price;
Endcomp;

EXAMPLE 2:
(illustrating: Break after varname , compute after statement).

REPORT DATA VECTOR
Zone Type price Bath _BREAK_

553850 10 _RBREAK_

DATA SET
Split 3 179950 3
Condo 1 214900 3
Split 1 100000 4
Split 1 82900 3
Condo 2 189900 4
Row 2 184000 3

SYNTAX
Proc report data=second

headline out=out2;

where zone GE "2";

column
zone type price bath;

define zone/order width=5;

define type / order;
define price/ sum ;

define bath / sum width=5;

Break after zone

/summarize ol skip
suppress;

Rbreak after

/summarize dol;

compute after ;

Zone="ALL";
endcomp;

TEMP INTERNAL FILE
Zone Type price Bath _BREAK_
2 Condo 189900 4
2 Row 184000 3
2 373900 7 Zone
3 Split 179950 3
3 179950 3 Zone

553850 10 _RBREAK_

REPORT OUTPUT
Zone Type price Bath
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
2 Condo 189900 4

Row 184000 3
ƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒ

373900 7

3 Split 179950 3
ƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒ

179950 3
===== ========= =====
ALL 553850 10

B

A

C

D

E

E

FALL

D

E

D

D
F

F

D

G

Figure 4 (shown enlarged at end)

To make output fit on the slide in Figure 4, a where clause was used
(A). The column statement (B) specifies the variables that are in
the TIF and their left-to-right order. Zone and Type are defined as
order (C) and this determines the top-to-bottom order of the TIF and
SAS listing. There is a command to break after zone (D) that
produces a summary line in the TIF every time zone changes value.
Since price and bath (C) are type SUM, summed values appear on
the break-after lines (D). The summarize option causes the break-
after lines to print in the SAS listing. Additional options specify
skipping a line after zone changes value, a single OverLine when
zone changes value and a Double OverLine over information
produced by the Rbreak After statement. The Suppress option
causes Proc Report to suppress the printing of the value of the zone
on the break line.

The compute after statement (F) executes when the last observation
passes through the RDV. In Figure 4, all the observations, except
one, in the TIF have been processed through the RDV. The last
observation is shown still in the RDV, about to be transferred back to
the TIF. After all observations in the TIF have been processes
through the RDV, data will flow from the TIF to the listing. In Figure
4, the “compute after statements” (F) have executed and Zone now
has the value of “ALL”;

The compute after statement is “linked” to the Rbreak After. Either
would produce a row in the TIF, but they do not automatically cause
information to be written to the SAS listing. This allows
programmers to create summary level information to be used in
calculations without having to have that information on the SAS
listing.

4

The final report is shown in the bottom right hand corner. Note that
the summarize option (E) has caused the summary information to be
printed. The DUL option has produced Double UnderLines in the
listing. Because there were no grouping variables, the raw data
(rather than grouped data) is presented in the SAS listing.

Finally, note (G) that Proc Report will automatically suppress the
repeated printing of ordered and grouped values. This makes for a
cleaner looking report, but sometimes causes confusion.

EXAMPLE 3:
(Illustrating: grouping observations)

TEMP INTERNAL FILE
Zone price Bath _BREAK_
ALL 771700 17 _RBREAK_
1 397800 10
2 373900 7

REPORT DATA VECTOR
Zone price Bath _BREAK_

DATA SET
Split 3 179950 3
Condo 1 214900 3
Split 1 100000 4
Split 1 82900 3
Condo 2 189900 4
Row 2 184000 3

SYNTAX
Proc report data=second

nowd headline out=out2;

column zone price bath;

define zone / Group width=5;

define price/ sum ;

define bath /sumwidth=5;

rbreak before /summarize ul;

compute before ;

Zone = ”ALL” ;

endcomp;

where zone le "2";

run;

REPORT OUTPUT
Zone price Bath
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
All 771700 17
ƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒ
1 397800 10
2 373900 7

B

A

C

E

C

D

D

E

Figure 5 (shown enlarged at end)

Figure 5 shows the state of the system when the Proc Report has
finished writing to the SAS listing and is about to delete the TIF.
Figure 5 uses the column statement (A) to create zone, price, and
bath in the TIF. Note the where statement (B), on the variable zone,
is used to filter out observations.

Zone is defined as group (C) and SAS produces one observation in
the TIF for each level of Zone that meets the where criteria. The
Rbreak Before (D) creates a line in the TIF and the summarize
option on that statement causes the line to print in the listing. The
Compute Before statement (E) only executes when the first line of
the TIF is in the RDV. As in Figure 4, it changes the value of zone
to “All”.

EXAMPLE 4 (Figure is shown enlarged at end of Paper)
(Illustrating: timing of calculations)

This complex example illustrates the timing of different operations,
especially the different types of computes. It also shows the
compute after/before statements, and compute after/before
variable_name statements, creating lines in the TIF.

SYNTAX

proc report data=house

out=exec nowd spacing=2;

column sty regn detl rept grup n;

define sty-regn / order;

define detl / computed;

define rept / computed;

define grup / computed;

compute before;

endcomp;

compute detl;

detl=333;

endcomp;

compute rept;

rept=10;

endcomp;

compute after sty;

endcomp;

compute after regn;

rept=3;

grup=4;

endcomp;

compute after;

grup=3/21;

rept=rept*2.2;

endcomp;

REPORT DATA VECTOR
zone price.sum AllProp Pct_tot Bath _BREAK_

TEMP INTERNAL FILE

Sty regn detl rept grup n _BREAK_

333.00 10.0 . 6 _RBREAK_

Condo 1 333.00 10.0 . 1

Condo 1 333.00 3.0 4.00 1 regn

Condo 2 333.00 10.0 . 1
Condo 2 333.00 3.0 4.00 1 regn

Condo 333.00 10.0 . 2 Sty

Row 2 333.00 10.0 . 1

Row 2 333.00 3.0 4.00 1 regn

Row 333.00 10.0 . 1 Sty
Split 1 333.00 10.0 . 1

Split 1 333.00 10.0 . 1

Split 1 333.00 3.0 4.00 2 regn

Split 3 333.00 10.0 . 1

Split 3 333.00 3.0 4.00 1 regn
Split 333.00 10.0 . 3 Sty

333.00 22.0 0.14 6 _RBREAK_

Table AFTER Processing through the RDV

Compute after sty created summary

lines but did not change values.

B

A

C

F

D

E

A

C D

B

COLUMN

F

E

 Figure 6 (shown enlarged at end)

First, the column and define parts of the syntax execute and Proc
Report creates the shell of the TIF. Secondly raw data is
processed/summarized/loaded into the TIF. Finally, compute
statements start to execute..

There are three general types of compute statements. A simple
compute statement is an instruction to compute a value for a variable
(C) (D) as each line of the TIF passes through the RDV. A second
type of compute statement is an instruction to compute a value for
variable when a variable “breaks” (E) (F) or changes value (compute
before/after var_name). A third type of compute statement (compute
before/after) is an instruction to compute a value for a variable and
also modify summary information that describes the whole data set
(A) (B).

As processing starts, the first line from the TIF is loaded into the
PDV. The first compute statement to execute is the compute
associated with the left-most variable in the column statement. Sty
and regn are in Compute After statements and do not trigger
execution. The compute detl statements (C) execute and detl is
assigned a value of 333. Next the compute rept statements (D)
execute and rept is assigned a value of 10. Then the compute
before statements (A) execute. They have no instructions to the
RDV. Here, the compute before statements only create a line in the
TIF. Since they are not associated with a summarize option, these
statements do not produce output in the listing. These statements
were included simply to show that a compute before statement
creates a row in the TIF.

We should examine the processes when the third observation (F)
from the TIF enters the RDV. First detl (C) is set to 333. Then rept
(D) is set to a value of 10. Then, the break after statements (F) for
regn execute and assign new values to rept and grup. Compute
after statements execute after compute var_name statements. The
fact that the value of rept, in the TIF, is 3 indicates the order of
execution of the compute commands. The compute var_name
(compute rept) executed first and set the value of rept to 10. Then
the “compute after region executed” and re-set the value of rept to 4.

We should examine the processes when the sixth observation (E)
from the TIF enters the RDV. First detl (C) is set to 333. Then rept
(D) is set to a value of 10. Then, the “compute after sty” statements
(E) execute but have no instructions. The “compute after varname”
statements create lines in the TIF. The set of nonsense statements
(E) was included for the sole purpose of just showing that the
compute after statement will create a line in the TIF.

The last line in the TIF offers strong evidence on timing. When the
last observation (B) from the TIF enters the RDV some interesting

5

things happen. First detl (C) is set to 333. Then rept (D) is set to a
value of 10. Then, the compute after statements (B) execute. Grup
is set to .14 in a not very interesting hard-coded division.

However, thinking about the value of rept (B) is illuminating. The
only way that the rept assignment formula (rept=rept*2.2) could
return a value of 22 is if rept had a value of 10 before the assign
formula executed. Rept was set to 10 by the compute rept
statements (D). That value of 10 was used as input in the “compute
after” statement. The result of 22 is offered as proof that the
“compute rept” statements executed before the “compute after”
statement. The general timing of computes is left to right in the
order that the variables appear in the column statement. Associated
with that timing rule is a rule that “compute varname” statements
execute before “compute before/after”.

EXAMPLE 5:
(Illustrating: Data Variables or retaining information across rows).

Figures 1 and 2 showed the Data Variable Table (or Report symbol
table) with a red border. The Data Variable Table has not been
shown in other figures to allow the use of larger fonts. It is now time
to consider the Data Variable Table, because it is that table that
allows us to retain values across rows in the TIF.

A data variable is defined as a variable that has been loaded from
the RDV into the Data Variable Table. Data variables use is
considered one of the more confusing parts of Proc Report because
of how Data Variables are created. Data Variables are not created by
a programmer typing one line of code but by the interaction of
several lines of code- lines of code that also have other functions.
This interaction of commands is what has made Data Variables an
advanced topic.

It is time to review several facts about Proc Report. Remember that
the column statement was used to create the TIF. Variables in the
column statement may, or may not, have compute statements
associated with them. If a variable is in the column statement,
regardless if it is has an associated compute statement, it will be in
the TIF and in the RDV… and it will be reset to missing before each
new observation enters the RDV.

Only the Pure YELLOW part of
the Venn Diagram shows

Data Variables.
Data Variables are only in

compute blocks.

Variable in
Compute
Block

Variable
In

Column
Statement

“Report Variables” vs “Data Variables”

A Venn Diagram

(the column statement & compute blocks)

A variable is a ìREPORT VARIABLEî if
itís in the

column statement
or in

the column statement and a compute block

Retained in the Report Symbol Table

as lines from the Temp Internal File

are processed

through

the RDV

Set to missing in the

RDV as every line of

the Temp Internal

File is processed

through

the RDV

Figure 7

If a variable is in a compute statement, and only in a compute
statement, it will not be created in the TIF or RDV. It will be created
in a special table- the Data Variable Table (AKA the Report Symbol
Table). The Data Variable Table is much like the macro symbol

table. Variables in the Data Variable Table are not automatically
reset to missing as observations are processed through the RDV.
The Venn diagram in Figure 7 illustrates this logic of Report
Variables and Data Variables.

REPORT DATA VECTOR
zone price.sum Pct_tot Bath _BREAK_

Data Var Table
AllProp

TEMP INTERNAL TABLE

SYNTAX
Proc report data=second

nowd headline out=out4;

column

zone pricePct_tot bath;

define zone / Group width=5;

define price/ sum ;

define Pct_tot/computed

format=percent6.2 width=8;

define bath /sum width=5;

compute Pct_tot;

Pct_tot=price.sum/AllProp;

endcomp;

rbreak before / summarize ul;

compute before ;

Zone=”ALL";

AllProp=price.sum;
endcomp;

rbreak after /summarize dol;

run;

REPORT OUTPUT

PCT_TOT is in
the column statement AND a compute block.

It is a Report variable.
In the RDV, it is initialized at every line.

(Defines do not count in these rules)

ZONE is only in a column statement. It is a
Report variable. Itís initialized at every line.
(Defines do not count in these rules

ALLPROP appears only in compute blocks.
Therefore, it is a Data Variable.
It is NOT in the Temp Internal File.
It is NOT stored in the RDV.
It is stored in a separate table -
 Called the Report Symbol Table
 or the Data Vector Table.
Data Variables have Automatic Retain.
Generally, they appear in TWO Computes Blocks

Figure 8 (shown enlarged at end)

Figure 8 shows a section of SAS code that creates Report Variables
and a Data Variable. The reader is encouraged to work through the
text in the yellow boxes, and the syntax in Figure 9, to increase
his/her understanding.

REPORT DATA VECTOR
zone price.sum Pct_tot Bath _BREAK_

TEMP INTERNAL TABLE
Zone price.sum AllProp Pct_tot Bath _BREAK_

951650 . . 20 _RBREAK_

1 397800 . . 10

2 373900 . . 7

3 179950 . . 3

951650 . . 20 _RBREAK_

SYNTAX
Proc report data=second
nowd headline out=out4;
column

zone pricePct_tot bath;

define zone / Group width=5;
define price/ sum ;

define Pct_tot/computed

format=percent6.2 width=8;
define bath /sum width=5;

compute Pct_tot;

Pct_tot=price.sum/AllProp;

endcomp;

rbreak before / summarize ul;
compute before ;

Zone=”ALL";

AllProp=price.sum;
endcomp;

rbreak after /summarize dol;
run;

REPORT OUTPUT

Variables move

into the RDV from the Temp Internal File.

Price.sum, at this time,

has the information we want to retain!
Price.sum will be reset to missing, and

overwritten, as new data comes into the RDV!
To “RETAIN” information, copy it to a

“Holding Variable”, a DATA VARIABLE, that
will not be reset.

Computes are performed in the RDV.

ALL 951650 . 20 BREAK_

Data Var Table
AllProp

951650

Figure 9 (shown enlarged at end)

Figure 9 illustrates the process of creating a Data Variable. This
code is going to calculate the percentage that each line in the TIF
represents of the total, for the variable price, in the data set. Price is
a sum variable and is referenced with a two part name (price.sum).

When the “Compute Before” executes (as seen in Figure 9), price, in
the RDV, is holding the value we need for the divisor. Before the
second observation enters the RDV, the value of price.sum will be
initialized to missing and the information will be lost to use- unless
action is taken.
The solution is to copy the information we want to retain out of the
RDV into a different memory section- one that does not automatically
get updated as new observations are processed. This copying is
what is shown in Figure 9. The trick for retaining
information/variables is: when the information you wish to retain is in
the RDV, copy it to a new variable – a variable that is never
mentioned in the column statement. This is how desired information
is copied out of the RDV and into the Data Variable Table (or Report
Symbol Table).

6

Use of the value stored in the Data Variable Table is shown in Figure
10. As we discussed above, “compute varname” statements
execute as every line from the TIF passes through the RDV. In
Figure 10 we see the percent calculation happening as the compute
Pct_tot statements execute.

SYNTAX
Proc report data=second
nowd headline out=out4;

column

zone price Pct_tot bath;

define zone / Group width=5;

define price/ sum ;

define Pct_tot/computed

format=percent6.2 width=8;

define bath /sum width=5;

compute Pct_tot;

Pct_tot=price.sum/AllProp;

endcomp;

rbreak before / summarize ul;

compute before ;
Zone=”ALL";

AllProp=price.sum;
endcomp;

rbreak after /summarize dol;

run;

REPORT OUTPUT

TEMP INTERNAL TABLE
Zone price.sum Pct_tot Bath _BREAK_
ALL 951650 . 20 _RBREAK_
1 397800 .418 10
2 373900 .392 7
3 179950 . 3

951650 . 20 _RBREAK_

REPORT DATA VECTOR
zone price.sum Pct_tot Bath _BREAK_
3 179950 0.189 3

Data Var Table
AllProp

9516500.189

Figure 10 (shown enlarged at end)

It is interesting to note that the value of Pct_tot is missing in the first
row of the TIF. That is because “compute varname” statements
execute before “compute before” statements. The sequence of
operations that resulted in this missing value for Pct_tot follows.
The first observation moved from the TIF into the RDV. The

“Compute Pct_tot” statements executed but allprop was missing and
the result of the assignment was a missing value. Then the
“Compute Before” statements executed. Zone was set to ALL and
the value of price.sum was copied into allprop.

CONCLUSION

Proc Report is a powerful tool for generating complex reports. The
understanding of the Temporary Internal File that Proc Report
creates is useful for creating complex reports and for debugging.

Use of the outfile=option is key to understanding proc report.

ACKNOWLEDGMENTS (HEADER 1)
Thanks to Sandy MCNeill of SAS Institute for sharing her time and
understanding.of this material.

CONTACT INFORMATION (HEADER 1)
Your comments and questions are valued and encouraged.
Contact the author at:

Russell Lavery
Independent Contractor
9 Station Ave. Apt 1
Ardmore, PA 19003
610-645-0735 # 3
Email: russell.lavery@att.net

TEMP INTERNAL FILE
Zone Type price Bath _BREAK_

951650 20 _RBREAK_
1 Condo 214900 3
1 Split 100000 4
1 Split 82900 3
2 Condo 189900 4
2 Row 184000 3
3 Split 179950 3

REPORT DATA VECTOR
Zone Type price Bath _BREAK_

DATA SET
Type Zone Price Baths
Split 3 179950 3
Condo 1 214900 3
Split 1 100000 4
Split 1 82900 3
Condo 2 189900 4
Row 2 184000 3

SYNTAX
Proc report data=second
nowd headline out=out1;

column
zone type price bath;

define zone / order
width=5;

define type / order ;
define price/ sum ;
define bath /sum width=5;

Rbreak before
/summarize dul;

run;

951650 20 _RBREAK_

REPORT OUTPUT
Zone Type price Bath
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

951650 20
======== ====

1 Condo 214900 3
Split 100000 4

82900 3
2 Condo 189900 4

Row 184000 3
3 Split 179950 3

B

A
C

D

E

E

F

G

H

Figure 3

7

REPORT DATA VECTOR
Zone Type price Bath _BREAK_

553850 10 _RBREAK_

DATA SET
Split 3 179950 3
Condo 1 214900 3
Split 1 100000 4
Split 1 82900 3
Condo 2 189900 4
Row 2 184000 3

SYNTAX
Proc report data=second

headline out=out2;

where zone GE "2";

column

zone type price bath;

define zone/order width=5;

define type / order;

define price/ sum ;

define bath / sum width=5;

Break after zone

/summarize ol skip

suppress;

Rbreak after
/summarize dol;

compute after ;

Zone="ALL";

endcomp;

TEMP INTERNAL FILE
Zone Type price Bath _BREAK_
2 Condo 189900 4
2 Row 184000 3
2 373900 7 Zone
3 Split 179950 3
3 179950 3 Zone

553850 10 _RBREAK_

REPORT OUTPUT
Zone Type price Bath
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
2 Condo 189900 4

Row 184000 3
ƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒ

373900 7

3 Split 179950 3
ƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒ

179950 3
===== ========= =====
ALL 553850 10

B

A

C

D

E

E

FALL

D

E

D

D
F

F

D

E

Figure 4

TEMP INTERNAL FILE
Zone price Bath _BREAK_
ALL 771700 17 _RBREAK_
1 397800 10
2 373900 7

REPORT DATA VECTOR
Zone price Bath _BREAK_

DATA SET
Split 3 179950 3
Condo 1 214900 3
Split 1 100000 4
Split 1 82900 3
Condo 2 189900 4
Row 2 184000 3

SYNTAX
Proc report data=second

nowd headline out=out2;

column zone price bath;

define zone / Group width=5;

define price/ sum ;

define bath /sum width=5;

rbreak before /summarize ul;

compute before ;

Zone = ”ALL” ;

endcomp;

where zone le "2";

run;

REPORT OUTPUT
Zone price Bath
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
All 771700 17
ƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒ
1 397800 10
2 373900 7

B

A

C

E

C

D

D

E

Figure 5

8

SYNTAX

proc report data=house

out=exec nowd spacing=2;

column sty regn detl rept grup n;

define sty-regn / order;

define detl / computed;

define rept / computed;

define grup / computed;

compute before;

endcomp;

compute detl;

detl=333;

endcomp;

compute rept;

rept=10;

endcomp;

compute after sty;

endcomp;

compute after regn;

rept=3;

grup=4;

endcomp;

compute after;

grup=3/21;

rept=rept*2.2;

endcomp;

REPORT DATA VECTOR
zone price.sum AllProp Pct_tot Bath _BREAK_

TEMP INTERNAL FILE

Sty regn detl rept grup n _BREAK_

333.00 10.0 . 6 _RBREAK_

Condo 1 333.00 10.0 . 1

Condo 1 333.00 3.0 4.00 1 regn

Condo 2 333.00 10.0 . 1

Condo 2 333.00 3.0 4.00 1 regn

Condo 333.00 10.0 . 2 Sty

Row 2 333.00 10.0 . 1

Row 2 333.00 3.0 4.00 1 regn

Row 333.00 10.0 . 1 Sty

Split 1 333.00 10.0 . 1

Split 1 333.00 10.0 . 1

Split 1 333.00 3.0 4.00 2 regn

Split 3 333.00 10.0 . 1

Split 3 333.00 3.0 4.00 1 regn

Split 333.00 10.0 . 3 Sty

333.00 22.0 0.14 6 _RBREAK_

Table AFTER Processing through the RDV

Compute after sty created summary

lines but did not change values.

B

A

C

F

D

E

A

C D

B

COLUMN

F

E

Figure 6

REPORT DATA VECTOR
zone price.sum Pct_tot Bath _BREAK_

Data Var Table
AllProp

TEMP INTERNAL TABLE

SYNTAX
Proc report data=second

nowd headline out=out4;

column

zone price Pct_tot bath;

define zone / Group width=5;

define price/ sum ;

define Pct_tot/computed

format=percent6.2 width=8;

define bath /sum width=5;

compute Pct_tot;

Pct_tot=price.sum/AllProp;

endcomp;

rbreak before / summarize ul;

compute before ;

Zone=”ALL";

AllProp=price.sum;
endcomp;

rbreak after /summarize dol;

run;

REPORT OUTPUT

PCT_TOT is in
the column statement AND a compute block.

It is a Report variable.
In the RDV, it is initialized at every line.

(Defines do not count in these rules)

ZONE is only in a column statement. It is a
Report variable. Itís initialized at every line.
(Defines do not count in these rules

ALLPROP appears only in compute blocks.
Therefore, it is a Data Variable.
It is NOT in the Temp Internal File.
It is NOT stored in the RDV.
It is stored in a separate table -
 Called the Report Symbol Table
 or the Data Vector Table.
Data Variables have Automatic Retain.
Generally, they appear in TWO Computes Blocks

Figure 8

9

REPORT DATA VECTOR
zone price.sum Pct_tot Bath _BREAK_

TEMP INTERNAL TABLE
Zone price.sum AllProp Pct_tot Bath _BREAK_

951650 . . 20 _RBREAK_
1 397800 . . 10
2 373900 . . 7
3 179950 . . 3

951650 . . 20 _RBREAK_

SYNTAX
Proc report data=second

nowd headline out=out4;

column

zone price Pct_tot bath;

define zone / Group width=5;

define price/ sum ;

define Pct_tot/computed

format=percent6.2 width=8;
define bath /sum width=5;

compute Pct_tot;

Pct_tot=price.sum/AllProp;

endcomp;

rbreak before / summarize ul;

compute before ;

Zone=”ALL";

AllProp=price.sum;
endcomp;

rbreak after /summarize dol;

run;

REPORT OUTPUT

Variables move

into the RDV from the Temp Internal File.

Price.sum, at this time,

has the information we want to retain!
Price.sum will be reset to missing, and

overwritten, as new data comes into the RDV!
To “RETAIN” information, copy it to a

“Holding Variable”, a DATA VARIABLE, that
will not be reset.

Computes are performed in the RDV.

ALL 951650 . 20 BREAK_

Data Var Table
AllProp

951650

Figure 9

SYNTAX
Proc report data=second

nowd headline out=out4;
column

zone price Pct_tot bath;

define zone / Group width=5;
define price/ sum ;

define Pct_tot/computed

format=percent6.2 width=8;
define bath /sum width=5;

compute Pct_tot;

Pct_tot=price.sum/AllProp;

endcomp;

rbreak before / summarize ul;

compute before ;
Zone=”ALL";

AllProp=price.sum;
endcomp;

rbreak after /summarize dol;

run;

REPORT OUTPUT

TEMP INTERNAL TABLE
Zone price.sum Pct_tot Bath _BREAK_
ALL 951650 . 20 _RBREAK_

1 397800 .418 10
2 373900 .392 7
3 179950 . 3

951650 . 20 _RBREAK_

REPORT DATA VECTOR
zone price.sum Pct_tot Bath _BREAK_
3 179950 0.189 3

Data Var Table
AllProp

9516500.189

Figure 10
DATA HOUSE1; INFILE DATALINES;

10

INPUT TYPE $ ZONE $ PRICE BATH @@;
DATALINES;
Split 3 179950 3 Condo 1 214900 3
Split 1 100000 4 Split 1 82900 3
Condo 2 189900 4 Row 2 184000 3
;
RUN;

EXAMPLE 1* BBREAK BEFORE;
Proc report data=HOUSE nowd headline
out=out1;
column zone type price bath;
define zone / order width=5;
define type / order ;
define price/ sum ;
define bath /sum width=5;
Rbreak before /summarize dul;
run;

PROC PRINT DATA=OUT1;
RUN;

**EXAMPLE 2 ** COMPUTE AFTER ;
Proc report data= HOUSING1 headline NOWD
out=out2;
where zone GE "2";
column zone type price bath;
define zone /order width=5;
define type / order;
define price / sum ;
define bath / sum width=5;
Break after zone /summarize ol skip suppress;
Rbreak after /summarize dol;
compute after ;
 Zone="ALL";
endcomp;
QUIT;

PROC PRINT DATA=OUT2;
RUN;

*****EXAMPLE 3 ;
 Proc report data=HOUSING1 nowd headline
out=out3;
column zone price bath;
define zone / Group width=5;
define price / sum ;
define bath /sum width=5;
rbreak before /summarize ul;
compute before ;
Zone = 'ALL' ;
endcomp;
where zone le '2';
run;

PROC PRINT DATA=OUT3;
RUN;

**
*******;
**MAKE VAR NAMES SHORTER SO THEY FIIT
ON A SLIDE**************;
DATA FEW;
INFILE DATALINES;
INPUT STY $ REGN $ PRICE BATH @@;
DATALINES;
Split 3 179950 3 Condo 1 214900 3
Split 1 100000 4 Split 1 82900 3
Condo 2 189900 4 Row 2 184000 3
;
RUN;

*****EXAMPLE 4a ;
proc report data=few out=out4a nowd spacing=2;
column sty regn detl rept grup n;
define sty / order;
define sty / order;
define detl / computed;
define rept / computed;
define grup / computed;
compute before;
endcomp;

compute detl;
 detl=333;
endcomp;
compute rept;
 rept=10;
endcomp;
compute after sty;
endcomp;
compute after regn;
 rept=3;
 grup=4;
endcomp;
compute after;
 grup=3/21;
 rept=rept*2.2;
endcomp;
proc print data=out4a;
run;

example 4b *NEEDS WORK *****;
PROC REPORT data=few out=out4b nowd
spacing=2;
column sty regn detl rept grup n;
define sty /order;
define regn /order ;
define detl /computed;
define rept /computed;
define grup /computed;

compute before;
endcomp;

compute detl;
if sty="" and _Break_= "_RBREAK_" then
detl=111;
 else if sty="" then detl=222;
 else if regn=. then detl=777;
 else detl=333;
endcomp;

compute rept;
 rept=10;
endcomp;

compute after sty;
endcomp;

compute after regn;
rept=3;
grup=4;
endcomp;

compute after;
grup=3/21;
rept=rept*2.2;
endcomp;
run;
quit;

proc print data=out4b;
run;

*****BACK TO HOUSING ONE DATA
SET***********************;
*****EXAMPLE 5 DATA VARIABLES **
RETAIINED VAIRABLES ***;
Proc report data=housing1
nowd headline out=out5;
column
 zone price Pct_tot bath;

define zone / Group width=5;
define price/ sum ;
define Pct_tot/computed format=percent6.2
width=8;
define bath /sum width=5;

copute Pct_tot;
 Pct_tot=price.sum/AllProp;

endcomp;

rbreak before / summarize ul;
compute before ;
Zone="ALL";
AllProp=price.sum;
endcomp;

rbreak after /summarize dol;
run;

proc print data=out5;
run;

******Example 6**** ;
OPTIONS MISSING=0;
data h_2;
infile datalines;
input type $ zone price_k bath;
datalines;
Split 3 179.9 3
Condo 1 214.9 3
Split 1 100.0 4
Split 1 82.9 3
Condo 2 189.9 4
Row 2 184.0 3

run;
proc print;
run;

proc report data=H_2 NOWD out=o6;
column type zone price_k=count price_k bath;
Define type /group width=12;
define zone /across "# Prop./in Zone"
width=2;
define count /n "# Prop/on Mkt." width=11;
define price_k /analysis mean format=6.1
"Avg./Price" width=10;
rbreak after / dol summarize skip;
RUN;
QUIT;

Proc print data=O6;
run;

